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FORCED CONVECTION CONDENSATION 

IN THE PRESENCE OF NONCONDENSABLES 

AND INTERFACIAL RESISTANCE 
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Ah&w-The effect of a noncondensable gas on condensation in a forced convection laminar boundary- 
layer flow is explored analytically. The analysis is 6rst carried out in general for any arbitrary flow con- 
sisting of a vapor and a noncondensable gas, and certain universal results are obtained. Solutions of the 
similarity differential equations are found both numerically and by an integral method. The general 
formulation is applied to the steam-air system, and the heat transfer with and without the noncondensable 
is compared for a wide range of operating conditions. The reductions in heat transfer due to the non- 
condensable are accentuated at low operating pressures. In general, condensation in the forced convection 
flow is much less sensitive than that in a gravity flow. The effect of an interfacial resistance (i.e. a temperature 
jump at the liquid-vapor interface) is also examined. The computed results reveal a negligible effect on 

the heat transfer. 

NOMENCLATURE 

specific heat of condensate ; 
binary diffusion coeftlcient ; 
diffusion layer thickness ; 
dimensionless stream function, equa- 

u m, free stream velocity ; 

u, 0, velocity components; 

W, mass fraction of gas; 

x, y, coordinates. 

tion (13); 
dimensionless stream function, equa- 

Greek symbols 
A 

tion (3); 
latent heat; 
diffusive mass flux ; 
molecular weight ; 
interfacial mass flux ; 
Prandtl number of condensate; 
total pressure ; 
vapor pressure ; 
surface heat flux/time-area ; 

property ratio, C(PPM~~)]~ ; 
Schmidt number of mixture ; 
temperature ; 

velocity layer thickness of mixture ; 
condensate layer thickness ; 
similarity variable, equation (3) ; 
valueofqaty=6; 
dimensionless temperature, equation 

(3); 

* Coordena@o dos Programas Ws-graduados de Engen- 
hark, Universidade do Brasil, Rio de Janeiro. v, 4k 

t Department of Energy Engineering, University of dd, 
Illinois at Chicago Circle, Chicago, Illinois. 
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absolute viscosity ; 
kinematic viscosity ; 
similarity variable, equation (13) ; 
valueofraty=d; 
valueofraty= ft; 
density ; 
condensation coefftcient ; 
mass fraction variable, equation (28) ; 
stream functions ; 
interfacial resistance group, equation 
(41a). 
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Subscripts 

93 condensable gas; 
i, interface ; 

L, condensed liquid ; 

0, condensation of pure vapor without 
interfacial resistance; 

W, at the wall ; 
co, in the free stream ; 
mixture properties are unsubscripted. 

INTRODUCTION 

THE RECENT years have witnessed a growing 
interest in forced convection laminar boundary- 
layer flows wherein tihn condensation occurs 
[l-6]. Consideration has been given both to 
pure forced convection flows [2, 41 and to 
forced convection in the presence of a body 
force [ 1,3,5,6]. In the main, these investigations 
were concerned with the condensation of pure 
saturated vapors; that is, it was assumed that 
noncondensable gases were not present. The 
possible influence of an interfacial resistance 
(i.e. a temperature jump at the interface between 
the condensate and the vapor) was also neglected. 

The present paper is primarily concerned with 
the effect of noncondensable gases on film 
condensation in a forced convection laminar 
boundary layer. In the case of gravity-flow 
condensation, it has been well established both 
by analysis [7] and experiment [8] that the 
presence of a small amount of noncondensable 
gas gives rise to a marked reduction in the heat 
transfer.* Some discussion of the subject is 
contained in [3], but the paucity of the numerical 
information given therein precludes the deter- 
mination of heat transfer in the presence of 
noncondensable gases. 

Another factor which has received some 
attention in recent studies of gravity-flow 

* A corresponding analytical examination for the forced 
convection boundary layer was, within the knowledge of 
the authors, unavailable at the time this investigation was 
performed. A relevant publication, due to Koh [12], was 
brought to the attention of the authors during the period of 
editorial review. Further discussion of Koh’s contribution 
will be deferred until later. 

condensation (for example [7,9]) is the effect of 
a thermal resistance at the interface between the 
liquid and the vapor. In brief, the existence of 
the interfacial resistance can be traced to the 
fact that the net condensation of vapor is 
actually the difference between the simultaneous 
processes of evaporation and condensation. 
According to the kinetic theory of gases, an 
unbalance between these two processes must be 
accompanied by a temperature jump at the 
interface, thereby giving rise to a thermal 
resistance. The effect of such an interfacial 
resistance is also examined as part of this 
research. 

The analytical treatment is first carried out 
in general and is then applied to the case wherein 
steam is the condensing vapor and air is the 
noncondensable gas. The selection of steam was 
made on the basis of its technical importance, 
and air is a common noncondensable. Results 
are obtained both from numerical solutions of 
the similarity form of the boundary-layer equa- 
tions and from an integral solution (Karman- 
Pohlhausen type) of the same equations. The 
latter solution is presented in the Appendix. 

THE ANALYTICAL MODEL 

The situation under study is pictured 
schematically in Fig. 1, which also shows 
dimensional nomenclature and coordinates. 

FIG. 1. Physical model and coordinate system. 

The free stream flow is a mixture of a vapor and 
a noncondensable gas. The concentration of 
the noncondensable in the free stream is 
characterized by its mass fraction W,. The free 
stream temperature 7&, is the saturation tem- 
perature corresponding to the partial pressure 
of the vapor in the freestream. 
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The condensate layer constitutes a readily 
identifiable boundary layer adjacent to the 
plate surface. Moreover, owing to viscous. 
diffusion, and heat-conduction processes, velo- 
city, concentration, and temperature boundary 
layers exist in the vapor-gas mixture. The 
dynamic interaction between the liquid and 
the vapor-gas boundary layers determines the 
rates of condensation and heat transfer. 

In formulating an analytical model for the 
present problem, careful consideration was 
given to the available results for condensation 
of a pure vapor in a forced convection laminar 
boundary-layer flow [2, 41. In the model 
adopted by Cess [2], inertia forces and con- 
vected energy (i.e. subcooling) are neglected in 
the condensate layer. In addition, the streamwise 
velocity at the interface is regarded as zero* for 
the solution of the velocity field in’the vapor-gas 
boundary layer. On the other hand, none of 
these simplifications were employed by Koh [4]. 

The heat-transfer results from the two analyses 
for the Prandtl number range of non-metallic 
liquids (i.e. Pr > 1) are conveniently brought 
together in Fig. 8(b) of [4]. The comparison 
between the results must be made with con- 
siderable care owing to the values of the key 
parameter? R = [(pp)&p)]* that were em- 
ployed in [4]; in particular, the lower para- 
metric values are not realistic for typical 
condensation processes at atmospheric and sub- 
atmospheric pressure.$ For realistic values of R, 
the results of [2,4] are, for all practical purposes, 
identical ; thereby lending support to the simpli- 
fying assumptions of the former analysis. Further 
support for the neglect of inertia and convection 
is provided by the order of magnitude argu- 
ments of Shekriladze [S]. 

When noncondensable gases are present, the 
condensate layer thickness is smaller than in 

l This assumption is implied when the bracketed term 
in Cess’ equation (19~) is taken to be unity. 

t Unsubscripted properties pertain to the vapor-gas 
mixture, while those of the liquid bear the subscript L. 

$ In the present investigation, values of R ranged from 
approximately 200 to 2000. 

the case of a pure vapor, all other things being 
equal. Correspondingly, the aforementioned 
simplifying assumptions become even more 
reasonable. Thus, in the analysis that follows, 
inertia and convection in the liquid layer will be 
neglected, and the streamwise velocity com- 
ponent at the interface will be taken to be zero 
in the computation of the velocity field in the 
vapor-gas boundary layer. 

In addition, it is particularly convenient to 
consider first the case wherein noncondensable 
gases are present but where the interfacial 
resistance is neglected. The effect of the inter- 
facial resistance is investigated in a later section 
of the paper. 

ANALYSIS OF CONDENSATION IN THE 
PRESENCE OF NONCONDENSABLJtS 

The liquid boundary layer 
The starting point of the analysis is a con- 

sideration of-the liquid layer. For constant fluid 
properties* and negligible inertia and energy 
convection, the conservation equations reduce 
to 

aU+a”=O, 
ax ay 

a34 o a2T 
- = 0. (1) ayZ = ’ ay2 

Upon introducing transformed variables, these 
become 

f “’ = 0, &I = 0 (2) 

where 

T-T 
tJ=----.-2 

T-T,’ (3) 

$ is the conventional stream function, while T 
is the interface temperature. In general, when a 
noncondensable gas is present, the value of T is 
not known a priori but rather, it must be deter- 
mined as part of the solution. The primes 

* A reference temperature will be employed when 
subsequent numerical evaluations are performed. 
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denote differentiation with respect to r7. It is 
also useful to note that, in terms of the trans- 
formed variables, the velocity components u 
and o are expressible as 

ati U=-_=U*fl, ay 
a* 1 kvL v= -ax=2 UC >1 - (rlf’ - f)* (4) x 

The solutions of equations (2), corresponding 
to the conditions that u = v = 0 and T = T, 
at the wall (y = 0) and that T = T at the inter- 
face (y = 6) follow readily as 

f = 3f312, tL; 

in which 

f :: = f”(O), (6) 

Although equation (5) represents a formal solu- 
tion of the conservation equations for the liquid 
layer, it is to be emphasized that bothfi and ‘la 
remain to be determined. 

The foregoing solution can be employed to 
evaluate the energy balance at the interface 
(y = 6). Consid er an element of interface (length 
dx) and let ti be the rate at which mass crosses 
the interface per unit length. Under steady-state 
conditions, the sum of the latent heat liberated 
at the interface and the heat conducted to the 
interface from the vapor-gas side must equal 
the heat conducted away from the interface on 
the liquid side; that is 

rhh,,+lcg=k, 
ay 

(7) 

In general, the contribution of the conduction 
from the vapor-gas mixture is negligibly small 
compared with the contribution of the latent 
heat; correspondingly, the second term on the 
left-hand side of equation (7) may be omitted. 

Strictly speaking there are four conservation 
laws to be fult%xl in the vapor-gas boundary 
layer : mass conservation for the mixture, species 
conservation for one of the components, 
momentum conservation, and energy conserva- 
tion. The latter comes into play because, owing 
to the presence of the noncondensable, the 
temperature field is nonuniform even if the free 
stream flow is at the saturation condition. 
However, as was already noted, the energy 
transferred to the interface due to convection- 
conduction in the vapor-gas boundary layer is 
very small relative to that liberated as latent 
heat. Consequently, no further consideration 
need be given to the energy equation. 

The condensation rate & is conveniently To proceed, it is especially advantageous to 
expressed in terms of the variables of the analysis deal first with. the continuity and momentum 

by starting from the equation of definition 

7i)dx = pL(udJ - vdx) (8) 

and employing equations (4) and (6), from 
which there follows 

Then, substituting this into (7) and making use of 
the transformed variabies, one finds 

Furthermore, the right-hand side can be evalu- 
ated from the solutions forfand 6, equation (5) 
giving 

(11) 

The left-hand side of this equation represents a 
dimensionless group that recurs frequently in 
analyses of condensation, the magnitude of 
which governs the heat-transfer rate. Equation 
(11) will be employed later to eliminate the less 
pertinent quantityfi. 

The velocity problem in the vupo~-gas boundary 
layer 
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equations, and to momentarily defer treatment 
of the diffusionequation. The former are 

aU+E=O, au au a2u 

ax ay u~+"ay=Vay' (12) 

where constant properties are assumed.* The 
foregoing are reduced to similarity form by 
writing 

(13) 

from which there follows 

F”’ + +FF” = 0 (14) 

where, now, the primes represent derivatives 
with respect to <. It should be pointed out that 
the similarity variable is defined so that r = 0 
at the interface between the liquid and the vapor- 
gas mixture. The velocity components, when 
expressed in terms of the new variables, are 

(154 

+ U$F Wb) 

in which the last term in equation (15b) stems 
from the displaced origin of the similarity 
variable & 

Equation (14) is readily recognized as the 
classical Blasius equation. However, the cor- 
responding boundary conditions are altogether 
different from those of the Blasius case. To 
obtain the conditions on F, one must employ 
the following continuity conditions at the inter- 
face and in the free stream. 

* The accounting of variable fluid properties would 
immediately require that consideration be given to speciiic 
fluids and to specifk operating conditions, thereby des- 
troying the generality of the present solution method. It is 
the intention of the authors to examine the effect of fluid 
property variations at a later time. 

(1) The streamwise velocity u is continuous at 
the interface. However, owing to the fact that 
the interfacial value of u is very much less than 
U,, it is permissible to take u = 0 at the inter- 
face. In view of equation (Isa), this gives 

F’(0) = 0. (16) 

(2) Mass is conserved across the interface. 
The mass crossing the interface from the vapor- 
gas mixture, taking account of the diffusive as 
well as of the convective component, is 

litdx = duds - udx) - 0’” +j&l.x (17) 

in which j, and je respectively represent the 
diffusive fluxes of the vapor and of the gas. 
However, (j, + jJ = 0. With this, and with the 
use of equations (15a) and (15b), the foregoing 
becomes 

lit = ; [d(q)] F(0). (18) 

Upon equating the ti expressions embodied in 
equations (9) and (18), there follows 

F(0) = Rf(tla) (19) 

where 

R = b4~/Wl*. (20) 
(3) The shear stress r = p((au/ay) is continuous 

at the interface. In terms of the transformed 
variables, continuity of shear is expressed as 

F”‘(0) = Rf”(tjJ. (21) 

(4) The streamwise velocity u approaches 
U, as y approaches infinity. In light of equation 
(Isa), this condition takes the form 

F’(cc) = 1. (22) 

The four conditions on F, as represented by 
equations (16, 19, 21, 22), can be rephrased and 
simplified by employing already derived results 
for the liquid layer. ln particular, thef(qJ and 
f”(q& appearing in equations (19) and (21) can 
be eliminated with the aid of (5) and subse- 
quently, in its tum,f; is eliminated by employing 
equation (11). As a result of these operations. 
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the conditions on F can be stated as 

F(0) = b cp’;g;rTw’];, F'(0) = 0, 

F"(O) = [R cp’~g~rTw’]~. (23a) 

F’(m) = 0. W-9 

Furthermore, from equations (23a), it is apparent 
that 

2F(O) + 
?a= F”(O) . 

[ 1 Wb) 

Indeed, equations (24a) and (24b) may be re- 
garded as alternatives to the first and third 
boundary conditions appearing in (23a), and 
it is, in fact, especially convenient to do so. 

In light of the fact that equation (14) is of third 
order, it is sufficient to prescribe three boundary 
conditions to specify its solution. Let these be 
F(0) = constant 2 0, F’(0) = 0, and F’(co) = 1. 

For a given F(O), a numerical solution of equa- 
tion (14) can be performed. Such a solution 
provides, among other results, the value of 
F”(0). Then, using the prescribed F(0) and the 
calculated F”(O), the corresponding values of 
R[c,(z - T,)/h,, PI] and qa can be evaluated 
from equations (24a) and (24b). By assigning a 
sequence of values of F(O), the relationship 
between the aforementioned parameters can 
be mapped out. 

As a matter of good fortune, Emmons and 
Leigh [lo] have already numerically solved 
equation (14) for a large number of F(0) values 
between 0 and 10. The F(0) and 4”(O) are listed in 
Table 1 along with the corresponding values of 
R[cp(T - T,)/h,,Pr] and qg ‘. These latter 
quantities are also plotted in Fig. 2 (solid line). 

There are several observations which are 
relevant to Fig. 2 and Table 1. First of all, the 
results have a universal character, that is, there 
is not a separate dependence of Q on R and on 
c,(T - T,)/h,, Pr; rather, only the product of 
these parameters appears. This is in contrast to 
the case of gravity-flow condensation, where, 
even if similar simplifying assumptions are made, 

FIG. 2. Variation of l/n, with Rc,(T, - T,)/h,,Pr. 
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a comparable universal represen~tion cannot be 
achieved. The condensation rate increases with 
increasing values of the abscissa of Fig. 2, while 
the ordinate represents the inverse of the con- 
densate layer thickness 6. Therefore, the thick- 
ness of the condensate layer increases with the 
condensation rate, but the increase is very 
gradual for larger abscissa values; this fact will 
be of significance in the numerical evaluations 
of the heat-transfer rate that will be made in a 
later section. At large values of the abscissa, 
1,‘~ approaches 05, while for small values of 
the abscissa, 

Table 1. Results from the velocity and di@ion* solutions the diffusion equation can be rephrased as 

0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
050 
060 
0.70 
1.00 
1.50 
200 
3.00 
4m 
500 
6.00 

0.35026 
0.36867 
0.38730 
040612 
0.42514 
044434 
046371 
0.48325 
050296 
0.52282 
056300 
0.60373 
0.72887 
094542 
1.16943 
1.63223 
2.10740 
258990 
3*07708 

@013358 I.87150 0.95073 
0.03~27 1.35770 @90510 
0.066008 1.13620 0.86273 
0.099244 100760 0.82332 
0.13556 0.92210 0.78658 
0.17431 @86053 075225 
0.21501 0.81391 0.72013 
0.25733 0.77721 0.69002 
0.30098 0.74755 0.66175 
o-34575 0.72306 0.63517 
@43799 0.68494 0.58654 
0.53298 0.65668 05432 1 
0.82825 060368 0.43803 
1.3360 0.56138 031857 
1.8495 0.54069 024075 
2.8759 0.52157 0.14927 
3.8967 0.51325 0.10047 
4.9125 0.50890 0.07173 
5.9244 0.50638 0.05322 

1000 504852 9.9518 0.50242 0.02161 

zs For SC! = 0.55 

If the interface temperature ‘I;- were known, 
then Fig 2 (or Table 1) would contain all the 
information needed to calculate the rate of heat 
transfer. However, T is unknown, and a con- 
sideration of the diffusion processes in the vapor 
gas mixture is necessary for its determination. 

The fiction prowler 
Let W denote the local mass fraction of the 

noncondensable gas such that 

w = P&e + P,). (26) 

Species conservation for the noncondensable 
gas can then be expressed by a diffusion equation 
as follows 

pug+“~=D d2W 

ay ay2 (27) 

in which D is the binary diffusion coefficient. 
By making use of the similarity transformation, 
equations (13) and (15), and introducing a 
reduced mass fraction @ 

w - w, 
@ = K. - w, (733) 

@‘+$ScFV=O. (29) 

The quantities I4$ and W, are, respectively, the 
mass fractions of the noncondensable gas at the 
interface and in the free stream. Whereas W, 
may be regarded as known, II$ is not known a 
priori. SC denotes the Schmidt number of the 
mixture. The boundary conditions on @ follow 
directly from equation (28), thus 

@j(O) = 1, @(co) = 0. (30) 

A formal solution of equations (29) and (30) 
can be written in the form 

Of particular relevance for the present analysis 
is the derivative d@/dS; at < = 0, which follows 
from equation (3 1) as 

Q’(O) = - l,/]exp (-F/ Fd<)d<. (32) 

0 
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It remains to extract the value of the inter- 
facial mass fraction Wi, which in turn, leads to 
the interface temperature T,. Owing to the fact 
that the interface is impermeable to tne non- 
condensable gas, it follows that the interfacial 
mass flux of the noncondensable is zero. Taking 
cognizance of both convective and diffusive 
transport, the impermeability condition 
becomes 

& Us-0 =je= _pDt.FY. ( > ay (33) 

If equation (33) is recast into the variables of 
the analysis, one arrives at 

1_+_PE. (34) 
i 

SC, F(O), and G’(O) thus available, equation (34) 
yields W,/W, By successively prescribing F(O), 
a corresponding set of values for W,,/& can be 
generated. However, since there is a unique re- 
lationship between F(0) and R[c&& - T,)/h,$r], 
it follows that W,/& is also uniquely related 
to the latter parameter, for a given Schmidt 
number. 

In anticipation of the forthcoming heat- 
transfer calculations, W,/i$ has been evaluated 
for SC = 055 (mixture of air and steam). The 
results are listed in the last column of Table 1 
and are also plotted in Fig. 3. It is evident that 
for all cases, K 2 W, ; in other words, there is 
a buildup of noncondensable gas at the inter- 
face. Moreover, if it is recognized that the 
abscissa is a measure of the condensation rate, 

I.0 

0 

FIG 3. Variation of h’,/b& with RcAT - T’,)/h,, Pr for SC = 0.55. 

It is interesting to observe that W, and 4 appear 
only as the quotient WJW,. 

Now, attention may be turned to the deter- 
mination of w. First, the Schmidt number is 
specified for the vapor-gas mixture under 
consideration. Then, if F(0) is also specified, the 
function F(e) is known and the quadrature 
represented by equation (32) yields @‘(O). With 

then it is evident from Fig. 3 that the buildup is 
accentuated at high rates of condensation. 
Indeed, the interfacial mass fraction of the 
noncondensable may exceed the free stream 
value by a factor of 10 or 20. 

The aforementioned trend is reasonable on 
physical grounds. A higher condensation rate 
is associated with a larger convective flow 
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toward the interface. The convective flow carries 
noncondensable gas as well as vapor. To balance 
the larger convective inflow of the noncondens- 
able, there must be a correspondingly augmented 
diffusive outflow. The magnitude of the diffusive 
flow depends on the magnitude of the concen- 
tration gradient, whence the increase of the 
interfacial mass fraction. 

Aside from the separate dependence on the 
Schmidt number, the results appearing in Fig. 3 
have a remarkably universal character. In 
particular, the single W,/K curve is universal 
for all W,. Furthermore, as was already dis- 
cussed in connection with Fig. 2, the dependence 
on R and c,(T - 7’J/hfe Pr appears only as a 
product of these parameters. In contrast, it is 
interesting to observe that for gravity-flow 
condensation, W, /K depends separately on 
SC, W,, R, and c# - Tw)/hfs Pr. 

The procedure by which the K results are 
employed in determining the interface tempera- 
ture q will now be outlined. 

Interface temperature; heat transfer 
Consider the condensation problem involving 

a specific vapor and noncondensable gas where- 
in the following quantities are specified: T,, 
W,, Tw This information, coupled with the 
results presented in the prior section, is sufficient 
for the determination of the interface tempera- 
ture K, 

The first step is to evaluate the total pressure 
p of the system. For this purpose, it is convenient 
to assume that the mixture and its components 
behave like perfect gases such that 

!s= 1-w 

P 1 - W(1 - 44,/M,) (35) 

where pV represents the vapor pressure. If T, is 
specified and the free stream is assumed to be 
at saturation, then pV is available from the 
tabulated properties of the vapor. With this and 
with the known value of W,, the total pressure 
p follows from equation (35). 

Next, a trial value of T is assumed. Owing to 

hA 

the fact that the interface is a saturation state 
for the vapor, the choice of T also fixes poti With 
these, 4 is found from the relation 

1 - @“/P) 

w = 1 - (P”/P)(l - M”/&) 
(36) 

which is simply a rephrasing of equation (35). 
Attention may now be turned to evaluating 

the abscissa variable of Fig. 3. For this purpose, 
the thermodynamic and transport properties. 
(R,c, h,, Pr) appearing therein are calculated 
at interface conditions. With these and with 
(q - T,), the value of the abscissa is determined 
and W,/& is read from the curve. The resulting 
4 is converted to pVi by applying equation (35) 
and in turn, T follows from the tabulated 
saturation data for the vapor. If the T thus 
obtained differs from that originally assumed, 
a readjustment is made and the process is 
repeated until convergence is achieved. 

The procedure outlined above can be modified 
to shorten the computations. For instance, for a 
given W,, the W,/K curve of Fig. 3 can be 
converted to a p”i/p curve, thereby eliminating 
further consideration of I+$. However, more 
significantly, the entire procedure can be carried 
out on an electronic computer. Indeed the 
forthcoming numerical results of this investiga- 
tion were generated in this manner. 

Once T has been found, then the heat- 
transfer rate follows directly. Let q denote the 
local heat transferred to the surface per unit 
time and unit area, so that 

MT - TJ 
qa (37) 

where equations (3) and (5) have also been used. 
The quantity l/fta is a unique function of 
R[c,,(T - Tw)/hfe Pr], and T is calculated as 
described in the foregoing paragraphs. 

It is particularly interesting to compare the 
heat-transfer rate in the presence of non- 
condensables with that for the case of a pure 
vapor. The comparison is made under the condi- 
tion that T,, T, and U, are the same in the 
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two cases. For the pure vapor (subscript 0), one 
has 

40 = 
~L,OKm - TV) 

(38) 
?a. 0 

where rla,o is found from Fig. 2 by replacing 
(I; - T,,,) in the abscissa with (T, - T,,,) and 
evaluating the fluid properties at T,. Then, 
upon ratioing equations (37) and (38), there 
follows 

2 = (E)( 5r;)($-)J(+Q. (391 
40 

The ratios of the condensate layer thicknesses 
and the temperature differences that constitute 
the first two terms of equation (39) are evaluated 
in accordance with the foregoing development. 
It only remains to discuss the computation of 
the property ratios. When a const~t-pro~rty 
analysis is applied to a real fluid, it is common to 
take account of the temperature-dependence of 
the properties by employing a reference tempera- 
ture. For the two cases under consideration 
here, the corresponding reference temperatures 
may be represented as 

T* = T, + C(T - T,) 

TX = T, + C(?b, - T,). 

(4Oa) 

(4Ob) 

The constant C has not been determined 
specifically for the problem of forced convection 
condensation. However, owing to the fact that 
the temperature differences are not large and 
that only property ratios are involved, there is 
no need to know C to a high degree of precision. 
For the case of gravity-flow condensation, the 
value of C was found to be O-31. For present 
purposes, it was deemed sufficient to use C = 3. 

Summing up, it is seen that for prescribed 
values of T,, T, and W,,, the heat-transfer ratio 
q/~~ can be calculated for a given free stream 
IIow of vapor and noncondensable gas. The 
departure of q/q0 from unity is direct measure 
of the effect of the noncondensable gas. 

The just-concluded general development will 
now be applied to the case of steam with air as 
the noncondensable. 

CONDENSATION OF STEAM WITH 
AIR AS NONCONDENSABLE 

The steam-air system, besides being of engi- 
neering interest, offers the possibility of direct 
comparison between forced convection bound- 
ary-layer flow (present investigation) and gravity 
flow [7]. The specialization of the solution 
method described in the preceding sections to a 
given vapor-gas system can be made as soon as 
the appropriate fluid properties are assembled. 
These include properties of the pure vapor 
(including the vapor pressure-temperature re- 
lation), of the condensed liquid, and of the gas. 
In addition, expressions for computation of the 
mixture density and viscosity are needed, as is 
the mixture Schmidt number, The fluid proper- 
ties for the steam-air system that were used in 
this investigation are the same as those pre- 
viously employed in [7]. Inasmuch as the 
sources of the property data and the computa- 
tion methods pertaining thereto are adequately 
discussed in the reference, there is no need for 
repetition here. 

Computations of q/q0 were performed for 
five values of the free stream temperature T, 
ranging from 212 to 80”F, which correspond 
approximately to a range in the system pressure 
p from 1 atmosphere to O-5 psi. At each T,, the 
mass fraction W, of the air in the free stream 
was assigned values of ONl5,0~02,0~05 and O-10. 
In addition, at each fixed Wm, the temperature 
difference (‘I’, - T,) was varied between 2 degF 
and 40 degF. 

The heat-tr~sfer results are presented in 
Figs. 4-8, which correspond respectively to T, 
values of 212, 180, 150, 115 and 80°F. In each 
figure, q/q0 is plotted as a function of the 
temperature difference (T, - T,) for parametric 
values of W,. The solid lines represent the 
results for forced convection condensation. The 
departure of the curves from unity is a direct 
measure of the effect of the noncondensable gas. 
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F'IG. 8. Condensation heat transfer for steam-air system T, = 80°F. 

Inspection of the figures reveals several 
general trends. At any fixed temperature differ- 
ence and fixed free stream temperature level, the 
heat transfer decreases monotonically as the 
mass fraction of the noncondensable increases. 
The decrease in heat transfer is perceptibly 
accentuated as the free stream temperature 
decreases (for instance, compare Figs. 4 and 8). 
Thus, the presence of the noncondensable is 
more strongly manifested when the condensa- 
tion takes place at sub-atmospheric pressures. 
At the higher free stream temperature levels and 
at the lower mass fractions, q/q0 is rather in- 
sensitive to the temperature difference (T, - 
T,). When T, decreases and W, increases, the 
heat-transfer ratio becomes more sensitive to 
the temperature difference, decreasing as (T, - 
T,) increases. 

Perhaps as interesting as the aforementioned 
trends are the actual magnitudes of the re- 
ductions in heat transfer. For a trace amount of 
noncondensable gas, say W, = 0905, the heat 
transfer is only slightly decreased. Indeed, even 
for W, = O-02, appreciable effects are en- 
countered only at the lower temperature levels 
and larger temperature differences. With larger 
values of W,, such as’O.10, q/q0 is much less than 
unity, especially at low temperature levels. 

The just-described decreases in the heat- 
transfer rate can be attributed to the buildup of 
the noncondensable gas at the interface, as was 
already discussed in connection with Fig. 3. The 
effect of such a buildup is to lower the corres- 
ponding partial pressure of the vapor, which, in 
turn, lowers the interface temperature z at 
which the condensation occurs (the interface is 
a saturation state). In this way, the thermal 
driving force (T - T,) is lowered, thereby 
decreasing the heat-transfer rate. 

It is especially interesting to compare the 
effect of the noncondensable gas in forced con- 
vection condensation with that for gravity-flow 
condensation. Results for the latter situation, 
available from [7], are plotted in Figs. 4 and 8 
as dashed lines,* Inspection of the gravity-flow 
results indicates general trends that are essenti- 
ally the same as those already enumerated for 
the forced-convection case. However, there is a 
dramatic difference in the extent of the heat- 
transfer reductions brought about by the pres- 
ence of the noncondensable gas. It is clear that 
gravity-flow condensation is very much more 

* Although available, gravity-flow results are not in- 
cluded in Figs. 5-7 because such further comparisons yield 
conclusions identical to those which follow from Figs. 4 
and 8. 
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sensitive to a noncondensable gas than is forced 
convection condensation, a finding that is 
intuitively reasonable. Indeed, in the former 
case, the presence of trace amounts (IV,, = O*OOS) 
can lead to q/q0 values on the order of 04-0*2, 
while larger concentrations such as W, = 0.10 
can reduce q/q0 to 0.1. These values of q/q,, are 
significantly lower than those for the forced 
convection case. 

It is also appropriate to discuss the work of 
Koh [12]. This publication describes a method 
for calculating the effect of noncondensables on 
forced convection tihn condensation ; but, aside 
from a single isolated case, no heat-transfer 
results are given. Owing to the fact that Koh 
elected to treat the problem without making 
use of the judicious simplifications employed 
here, his approach requires the pre-tabulation 
of information which depends on four inde- 
pendent parameters (rather than the present 
two). In light of such an extensive parametric 
dependence, it is not surprising that a pre- 
tabulation would fail to cover a significant 
number of interesting cases. For instance, none 
of the results appearing in Figs. 4-8 of the 
present paper is calculable from the information 
provided by Koh. In addition, no suggestion 
appears in Koh’s work as to how to select the 
parameters Pr and R, the choice apparently 
being somewhat arbitrary. Thus, in the one case 
worked out by Koh, Pr and R were taken as 
1 and 100, about half of the appropriate values. 

The single case considered by Koh for 
condensation involving a steam-air mixture is 
for W, = 0.02 and T, = 212°F (saturation 
temperature of free stream flow), along with Pr 
and R values as noted above. Unfortunately, 
no information is given about T,,,, and this 
precludes the possibility of direct comparison 
with the present results. However, there is every 
indication that the T, - T, corresponding to 
Koh’s computation was very much larger than 
any investigated here. This is inferred from the 
fact that Koh gives a value for 7; of 190°F while 
the T corresponding to the rightmost point on 
the W, = @02 curve of Fig. 4 is approximately 

207°F. For his assigned conditions, Koh finds 
q/q0 = 0.795, which is substantially below any 
of the values appearing in Fig. 4 for W, = 0.02. 
On the basis of his single result, Koh inferred 
that the effects of noncondensables in forced 
convection and gravity flows were of comparable 
magnitude. This inference is not borne out by 
the extensive comparisons of Figs. 4 and 8. 

THE EFFECT OF AN INTERFACIAL 

RESISTANCE 

As explained in the Introduction, kinetic 
theory indicates that the temperature of a 
condensing vapor differs from the temperature 
of the adjacent condensed phase. The effect of 
such a jump phenomenon is to lower the 
interface temperature, thereby reducing the 
thermal driving force. The magnitude of the 
temperature jump varies directly with the rate 
of condensation; consequently, the interfacial 
resistance is most strongly manifested in the 
case of a pure vapor, as was verified by heat- 
transfer calculations for gravity-flow condensa- 
tion [7]. In view of this, the forthcoming dis- 
cussion will be concerned only with a pure vapor. 

A widely accepted representation for the 
temperature jump, specialized to the case of a 
pure, saturated vapor (for instance, [9]), is 

where 

ri = sZ(T, - YJ (41) 

f2 =(k)(s)+%. (41a) 

In the foregoing (r is the condensation co- 
efficient characterizing the fraction of the vapor 
molecules striking the liquid surface which 
actually condense. R is the gas constant of the 
vapor. 

The numerical values of (T are different for 
different fluids. Indeed, even for a given fluid, 
the values of 0 reported by various investi- 
gators show considerable variation. For water, 
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which has been subject to rather intensive for steam, it may be concluded that the inter- 
investigation, 0 values ranging from 0.04 to 1 facial resistance has a negligible effect on forced 
have been reported. The most recent measure- convection condensation for this fluid. This is 
ments, performed with great care, indicate that in accordance with the findings of [7] for the 
(T is at least 0.35 and is probably unity. The case of gravity-flow condensation. 
various literature sources wherein this infor- 
mation is contained are cited in [7] and will not 
be repeated here. ACKNOWLEDGEMENTS 

The mass flux passing from the vapor into the 
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(42) 

Equation (42) provides a means for computing 
the change in the thermal driving force owing to 
the effect of the interfacial resistance. Once the 
foregoing ratio of temperature differences is 
known, the reduction in heat transfer can be 
evaluated by applying equation (39), where now 
the unsubscripted and subscripted quantities 
respectively denote the cases with and without 
interfacial resistance. 

It is evident from equation (42) that the values 
of U,, x, T,, (T - T,) and CJ, as well as the 
fluid itself, must be specified before the compu- 
tations can be performed. Values of 20 ft/s and 
0.25 ft appear to be reasonable choices for U, 
and x. Then, for T, = 212°F and (T - T,,,) = 
40 degF, q/q,, was found to be 0.9997, 0.9985 
and 0.985, respectively for 0 = 1, 0.35 and 0.04. 
These results are essentially unchanged when 
the computations were repeated using (T - T,) 
= 5 degF. Next, the heat transfer was computed 
for a temperature level T, = 80”F, resulting in 
q/q,, = 0.997, 0.987 and 0.873 for CJ = 1.0, 0.35 
and 0.04. These values are very little different if 
(T- TW)=40degFor5degF. 

Only if the 0 value were 0.04 would the inter- 
facial resistance lead to a non-negligible re- 
duction in heat transfer and then only at the 
relatively low temperature level T, = 80°F. In 
light of recent evidence suggesting that 0 = 1 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

REFERENCES 

W. M. ROHSENOW, J. H. WEBBW and A. T. LING, 
Effect of vapor velocity on laminar and turbulent film 
condensation, Trans. Am. Sot. Mech. Engrs 78, 1637- 
1643 (1956). 
R. D. CESS, Laminar film condensation on a Rat plate 
in the absence of a body force, Z. Angew. Math. Phys. 
11,4X%433 (1960). 
P. M. CHUNG, Film condensation with and without 
body force in a boundary layer flow of vapor over a 
flat plate, NASA TN D-790 (1961). 
J. C. Y. KOH, Film condensation in a forced-convection 
boundary layer flow, ht. J. Heat Mass Transfer 5, 
941-954 (1962). 
I. G. SHEKRILADZE and V. I. GOMELAURI, Theoretical 
study of laminar film condensation of flowing vapor, 
ht. J. Heat Mass Transfer 9, 581-591 (1966). 
H. R. JACOBS, An integral treatment of combined body 
force and forced convection film condensation, Int. J. 
Heat Mass Transfer 9, 637&+8 (1966). 
W. J. MINKO~YCZ and E. M. SPARROW, Condensation 
heat transfer in the presence of noncondensables, 
interfacial resistance, superheating, variable properties, 
and diffusion, Int. J. Heat Mass Transfer 9, 1125-l 144 
(1966). 
D. F. OTHMER, The condensation of steam, Ind. Engng 
Chem. 21, 577-583 (1929). 
S. P. SUKHATME and W. M. ROHSENOW, Heat transfer 
during film condensation of a liquid metal vapor, 
J. Heat Transfer 88, 19-28 (1966). 
H. W. EMMOM and D. C. LEIGH, Tabulation of the 
Blasius function with blowing and suction, Fluid 
Motion Sub-Committee, Aeronaut. Res. Coun., Report 
No. FM 1915 (1953). 
M. SADDY, Condensa@o no presenca de nb con- 
densavel em fluxo forcado, MSc. thesis, Coordena@o 
dos Programas Pos-Graduados de Engenharia, Uni- 
versidade do Brasil, Rio de Janeiro, Brasil (1966). 
J. C. Y. KOH, Laminar film condensation of condens- 
able gases and gaseous mixtures on a flat plate, in 
Proceedings of the 4th National Congress of Applied 
Mechanics, pp. 1327-l 336 (1962). 



FORCED CONVECTION CONDENSATION 1843 

APPENDIX 

Integral Solution for Condensation 
in the Presence of a Noncondensable 

An alternate, but approximate, solution for 
forced convection condensation in the presence 
of a noncondensable gas can be carried out 
using the momentum and diffusion integrals 
[ 111. By making liberal reference to the formu- 
lation reported in the main body of the paper, 
the description of the integral solution can be 
kept brief. 

The analysis of the liquid layer remains the 
same as before. To solve the velocity problem 
in the vapor-gas layer, equation (14) is replaced 
by its integral form 

2F”(O) = F(O)[l - F’(O)] + 1 F’d< - 1 (F’)2dt 

(43) 

wherein 

and y = A represents the edge of the velocity 
boundary layer in the vapor-gas mixture. For 
the velocity profile, one may use 

F’(<) = 2(i) - (;I. 
(45) 

The foregoing satisfies the conditions that F’(0) 
= 0, F’(cQ = 1, F”(&,) = 0. Moreover, by sub- 
jecting equation (45) to the third of conditions 
(23a), one finds 

thereby establishing a relation between cd and 

?a 
Then, upon substituting the profile (45) into 

the integrated momentum equation (43), carry- 
ing out the integrations, and making use of (46) 
and (23), there follows 

In effect, equation (47) takes the place of 
equation (24a) and the first two columns of 
Table 1. 

Numerical results obtained by solving equa- 
tion (47) are listed in Table Al and are also 
plotted in Fig. 2 (dashed line). Inspection of the 
figure shows that good agreement exists between 
the approximate and the exact solutions. 

Table Al. Resultsfrom the integral solution 

0.0103 2.092 0.795 0.9606 
0.0210 1.658 0.793 0.9371 
0.0334 1.429 0.790 0.9149 
0~0510 1.250 0.786 0.8880 
0.105 1000 0.777 0.8230 
0.169 0.870 0.766 0.7627 
0.228 0.800 0.756 0.7156 
0.352 0.714 0.737 0.6344 
0.466 0.667 0.724 0.5729 
0.624 0.625 0.707 0.5021 
0.852 0.588 0.685 0.4198 
1.221 0.556 0.657 0.3212 
1.521 0.541 0.639 0.2627 
2.304 0.521 0606 0.1636 
3.460 0.510 0.581 0.0912 

Next, attention is directed to the diffusion 
equation (29), whose integral form may be 
written as 

1 (48) 

where 

&, = (d - 6) (49) 

and y = d is the thickness of the diffusion layer. 
A mass fraction profile satisfying the conditions 
Q(O) = 1, @(c$) = 0, @‘(&) = 0 is 

G(r) = 1 - 2($-)+(-$ (50) 

& = 30[, c~&~)l’- (47) 
Also, by making use of the impermeability 
condition (34) and the first of equations (2%) 

_ , _ __,) 



1844 E. M. SPARROW, W. J. MINKOWYCZ and M. SADDY 

one finds 

(51) 

The integration appearing in equation (48) 
may now be performed. In this connection, it is 
essential to note that for the Schmidt number of 
interest here (0.59, cd > &. Upon taking cogniz- 
ance of this fact and carrying out the indicated 
operations, there results 

(52) 

For a given Schmidt number, the determina- 
tion of W,/H$ is carried out on a trial and error 
basis for a selected value of R[c,(z - T,)/h,, 
Pr]. Corresponding to the latter, equations (47) 
and (46) respectively give Q and t4. Then, upon 
assuming a trial value of Wm/Wb &, is calculated 
from (51). With the known values of <A and ld, 
a new W,/H( is obtained from equation (52). If 
the output and input values of W,/w are not 
the same, another guess is made and equations 

(51) and (52) are re-evaluated. This procedure is 
repeated until convergence is achieved. 

The results of the aforementioned calculation 
procedure are listed in Table Al, and the W,/H$ 
are also plotted in Fig. 3 (dashed line). In general, 
the agreement between the two curves shown in 
the figure is satisfactory, with the greatest 
deviations occuring at the larger values of the 
abscissa. 

The results from the integral solution were 
employed as a basis for computing q/q0 curves 
corresponding to the conditions of Figs. 4 and 8. 
The general agreement of these results with 
those shown in the aforementioned figures is 
entirely satisfactory, but there are some small 
differences in detail. These differences pre- 
sumably stem at least partially, from the 
deviations between the W$$ curves shown in 
Fig. 3. However, part of the difference may well 
be due to the fact that the fluid properties used 
in computing the q/q0 results from the integral 
solution were somewhat different from those 
used in evaluating the exact solution. In view of 
the uncertainty introduced by the use of 
different fluid properties, the q/q0 results from 
the integral solution have not been included in 
Figs. 4 and 8. 

R&nun~L’effet d’un gaz non condensable sur la condensation avec convection for& dans une couche 
limite laminaire est examine theoriquement. L’analyse est d’abord conduite en general pour n’importe 
quel ecoulement arbitraire d’une vapeur et d’un gaz non condensable, et certains resultats gentraux sont 
obtenus. On trouve numeriquement et par une methode integrate des solutions des equations differentielles 
de similitude. La formulation generale est apphquQ au systtme vapeur d’eau-air et l’on compare les 
transports de chaleur avec et sans le gaz non condensable dans une large gamme de conditions d’essai. 
Les reductions de transport de chaleur dues au gaz non condensable sont accentutes lorsque la pression 
cst faible. En general, la condensation avec convection for&e est beaucoup moins sensible que dans le cas 
d’un ecoulement db a la pesanteur. L’effet dune resistance in erfaciale (c’est-a-dire un saut de temperature 
a I’interface liquideevapeur) est tgalement examine. Les rtsultats due calcul montre que l’effet sur le 

transport de chaleur es negligeable. 

Zussmmenfasaung-Der Einfluss eines nichtkondensierbaren Gases auf Kondensationsvorgange in 
laminarer Grenzschicht bei Zwangskonvektion wird analytisch untersucht. Die Analyse wird erst in 
allgemeiner Form durchgefiihrt fiir beliebige Stromung eines Drimpfes und eines nichtkondensierbaren 
Gases ; dafiir wurden bestimmte universelle Ergebnisse erhalten. Liisungen der Differentialgleichungen 
wurden sowohl numerisch als such nach einer Integralmethode gefunden. Die allgemeine Formulierung 
wird angewendet auf das Dampf-Luft-System Der Warmeubergang ohne und mit nichtkondensierbarem 
Anteil wird in einem grossen Anwendungsbereich verglichen. Die Abnahme des Warmetibergangs infolge 
eines nichtkondensierbaren Ante& zeigt sich besonders bei kleinen Arbeitsdrticken. Im allgemeinen ist die 
Kondensation bei Zwangskonvektion weit weniger empfindlich als bei nattirlicher Konvektion. Der 
Einfluss eines Grenzflachenwiderstandes (d.h. ein Temperatursprung an der Fliissigkeits- und Dampf- 
grenze) wird ebenfalls untersucht. Die errechneten Ergebnisse zeigen einen vernachlassigbaren Einfluss auf 

den Warmelbergang. 
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AHHOTaqwJr-AHaJrUTusecHEl UccneAoBaHo Bnumue KeKon~encupymqerocK ra3a Ha K~H- 

AeHCaqUKI IIpU BbIHyWAeHHOti KOHBeKqUU B JlaMUHapHOM IIOl'paHU'lHOM CJlOe. npOBOAUJlCH 

061&i aHaJlU3 AJIH lIpOU3BOJlbHOrO IIOTOKP, COCTORIlJerO U3 Uapa U HeKOHAeHCUpyIO~el'OCfI 
raaa,u IIonyYeHbI HeKoTopbIe o6que pe3yJIbTaTbI. &I@@epeHquanbHne ypaBHeHUR no~o6HH 
&MllI?Hbl YUCJIeHHO, a TaKHSe C IlOMO~bIO UHTerpaJIbHOrO MeTOAa. 06qaK @OpMyJIUpOBKa 

IIpUMeHHeTCH AJIH CUCTeMbI nap-BO3AyX;IIpOUeCCbI TenJIOO6MeHa IIpU HaJIUWiU U OTCyTCTBUU 

HeKOHJJeHCUpyIOWel'OCR BeWeCTBa CpaBHUBaIOTCR MemAy co602t AJIH IUUpOKOrO AUaIta3OHa 

pa6owtx yCJIOBU8. nOA'iepKUBaeTCH, 9TO IIpU HU3KUX pa6omx AaBJIeHURX IfpUCyTCTBUe 

HeKOH~eHCUpyIOIQerOCFI I"838 CHUWaeT UHTt'HCUBHOCTb TeIIJIOO6MeHa. B o6qeM,KOHAeHCaqm 

IIpU BbIHyH(AeHHOt8 KOHBeKlJUU rOpa3AO MeHee 'JyBCTBUTeJIbHa, 9eM KOHAeHCa~UH B PpaBU- 

TalJUOHHOM IIOTOKe. &2CJIeAOBaHO TaKH(e BJIURHUe COIIpOTUBJIeHUll Ha IIOBepXHOCTU p33AeJIa 

(TO eCTb, TeMIIepaTypHbIti CKa'IOK Ha IIOBepXHOCTU pa3AeJIa WUAKOCTb-nap). &zIWICneHHbIe 

pe3yJIbTaTbI IIOKa3bIBalOT He3HaWTeJIbHOe BJIUFIHUe COIIpOTUBJleHUFl HaTeIIJIOO6MeH. 


