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NOMENCLATURE

specific heat of condensate;

binary diffusion coefficient;

diffusion layer thickness;
dimensionless stream function, equa-
tion (13);

dimensionless stream function, equa-
tion (3);

latent heat;

diffusive mass flux;

molecular weight ;

interfacial mass flux;

Prandtl number of condensate;

total pressure;

vapor pressure;

surface heat flux/time-area;

property ratio, [(pu)/(pW)]*;
Schmidt number of mixture;
temperature ;

* Coordenagio dos Programas Pés-graduados de Engen-
haria, Universidade do Brasil, Rio de Janeiro.
1 Department of Energy Engineering, University of
Illinois at Chicago Circle, Chicago, Illinois.

Abstract—The effect of a noncondensable gas on condensation in a forced convection laminar boundary-
layer flow is explored analytically. The analysis is first carried out in general for any arbitrary flow con-
sisting of a vapor and a noncondensable gas, and certain universal results are obtained. Solutions of the
similarity differential equations are found both numerically and by an integral method. The general
formulation is applied to the steam-air system, and the heat transfer with and without the noncondensable
is compared for a wide range of operating conditions. The reductions in heat transfer due to the non-
condensable are accentuated at low operating pressures. In general, condensation in the forced convection
flow is much less sensitive than that in a gravity flow. The effect of an interfacial resistance (i.e. a temperature
jump at the liquid—vapor interface) is also examined. The computed results reveal a negligible effect on

Uy, free stream velocity;
u,v, velocity components;
W, mass fraction of gas;
X,y, coordinates.
Greek symbols
4, velocity layer thickness of mixture;
o, condensate layer thickness;
", similarity variable, equation (3);
N5 value of n at y = 4;
6, dimensionless temperature, equation
(3);
i, absolute viscosity;
v, kinematic viscosity;
¢, similarity variable, equation (13);
¢ value of £ at y = d;
&4 valueof faty = 4;
P, density;
o, condensation coefficient ;
P, mass fraction variable, equation (28);
¥Y,y, stream functions;
0, interfacial resistance group, equation
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Subscripts

g. condensable gas;

i, interface ;

L, condensed liquid ;

0, condensation of pure vapor without

interfacial resistance ;
W, at the wall;
00, in the free stream;

mixture properties are unsubscripted.

INTRODUCTION

THE RECENT years have witnessed a growing
interest in forced convection laminar boundary-
layer flows wherein film condensation occurs
[1-6]. Consideration has been given both to
pure forced convection flows [2, 4] and to
forced convection in the presence of a body
force[1, 3, 5, 6]. In the main, these investigations
were concerned with the condensation of pure
saturated vapors; that is, it was assumed that
noncondensable gases were not present. The
possible influence of an interfacial resistance
(i.c. a temperature jump at the interface between
the condensate and the vapor) was also neglected.

The present paper is primarily concerned with
the effect of noncondensable gases on film
condensation in a forced convection laminar
boundary layer. In the case of gravity-flow
condensation, it has been well established both
by analysis [7] and experiment [8] that the
presence of a small amount of noncondensable
gas gives rise to a marked reduction in the heat
transfer.* Some discussion of the subject is
contained in [ 3], but the paucity of the numerical
information given therein precludes the deter-
mination of heat transfer in the presence of
noncondensable gases.

Another factor which has received some
attention in recent studies of gravity-flow

* A corresponding analytical examination for the forced
convection boundary layer was, within the knowledge of
the authors, unavailable at the time this investigation was
performed. A relevant publication, due to Koh [12], was
brought to the attention of the authors during the period of
editorial review. Further discussion of Koh’s contribution
will be deferred until later.
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condensation (for example [7, 9]) is the effect of
a thermal resistance at the interface between the
liquid and the vapor. In brief, the existence of
the interfacial resistance can be traced to the
fact that the net condensation of vapor is
actually the difference between the simultaneous
processes of evaporation and condensation.
According to the kinetic theory of gases, an
unbalance between these two processes must be
accompanied by a temperature jump at the
interface, thereby giving rise to a thermal
resistance. The effect of such an interfacial
resistance is also examined as part of this
research.

The analytical treatment is first carried out
in general and is then applied to the case wherein
steam is the condensing vapor and air is the
noncondensable gas. The selection of steam was
made on the basis of its technical importance,
and air is a common noncondensable. Results
are obtained both from numerical solutions of
the similarity form of the boundary-layer equa-
tions and from an integral solution (Karman-—
Pohlhausen type) of the same equations. The
latter solution is presented in the Appendix.

THE ANALYTICAL MODEL

The sitvation under study is pictured
schematically in Fig. 1, which also shows
dimensional nomenclature and coordinates.
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FiG. 1. Physical model and coordinate system.

The free stream flow is a mixture of a vapor and
a noncondensable gas. The concentration of
the noncondensable in the free stream is
characterized by its mass fraction W,. The free
stream temperature T, is the saturation tem-
perature corresponding to the partial pressure
of the vapor in the free stream.
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The condensate layer constitutes a readily
identifiable boundary layer adjacent to the
plate surface. Moreover, owing to viscous,
diffusion, and heat-conduction processes, velo-
city, concentration, and temperature boundary
layers exist in the vapor—gas mixture. The
dynamic interaction between the liquid and
the vapor-gas boundary layers determines the
rates of condensation and heat transfer.

In formulating an analytical model for the
present problem, careful consideration was
given to the available results for condensation
of a pure vapor in a forced convection laminar
boundary-layer flow [2, 4]. In the model
adopted by Cess [2], inertia forces and con-
vected energy (i.e. subcooling) are neglected in
the condensate layer. In addition, the streamwise
velocity at the interface is regarded as zero* for
the solution of the velocity field in' the vapor—gas
boundary layer. On the other hand, none of
these simplifications were employed by Koh [4].

The heat-transfer results from the two analyses
for the Prandtl number range of non-metallic
liquids (i.e. Pr > 1) are conveniently brought
together in Fig. 8(b) of [4]. The comparison
between the results must be made with con-
siderable care owing to the values of the key
parametert R = [(pu) /(pp)]* that were em-
ployed in [4]; in particular, the lower para-
metric values are not realistic for typical
condensation processes at atmospheric and sub-
atmospheric pressure.} For realistic values of R,
the results of [2, 4] are, for all practical purposes,
identical ; thereby lending support to the simpli-
fying assumptions of the former analysis. Further
support for the neglect of inertia and convection
is provided by the order of magnitude argu-
ments of Shekriladze [5].

When noncondensable gases are present, the
condensate layer thickness is smaller than in

* This assumption is implied when the bracketed term
in Cess’ equation (19¢c) is taken to be unity.

t Unsubscripted properties pertain to the vapor—gas
mixture, while those of the liquid bear the subscript L.

1 In the present investigation, values of R ranged from
approximately 200 to 2000.
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the case of a pure vapor, all other things being
equal. Correspondingly, the aforementioned
simplifying assumptions become even more
reasonable. Thus, in the analysis that follows,
inertia and convection in the liquid layer will be
neglected, and the streamwise velocity com-
ponent at the interface will be taken to be zero
in the computation of the velocity field in the
vapor—gas boundary layer.

In addition, it is particularly convenient to
consider first the case wherein noncondensable
gases are present but where the interfacial
resistance is neglected. The effect of the inter-
facial resistance is investigated in a later section
of the paper.

ANALYSIS OF CONDENSATION IN THE
PRESENCE OF NONCONDENSABLES

The liquid boundary layer

The starting point of the analysis is a con-
sideration of the liquid layer. For constant fluid
properties* and negligible inertia and energy
convection, the conservation equations reduce
to

ou Ov
a"l——a—);—(),

0*u o*T

—=0, —=0
oy? oy* 0. M
Upon introducing transformed variables, these
become

flll = 0’ 0!’ = 0 (2)
where
Uy
n=y \/<E>, ll/ = [\/(Uoova)] f(")’
L
T-T,
- 9

¥ is the conventional stream function, while T;
is the interface temperature. In general, when a
noncondensable gas is present, the value of T; is
not known a priori but rather, it must be deter-
mined as part of the solution. The primes

* A reference temperature will be employed when
subsequent numerical evaluations are performed.
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denote differentiation with respect to #. It is
also useful to note that, in terms of the trans-
formed variables, the velocity components u
and v are expressible as

oy

u_—-_
Oy

f’
o0 s

o= -2 JE2 w0 @

The solutions of equations (2), corresponding
to the conditions that u=v=0and T=T,
at the wall (y = 0) and that T = T, at the inter-
face (y = 8), follow readily as

f =34 o=% )

in which

=00 n-af() ©
X

Although equation (5) represents a formal solu-
tion of the conservation equations for the liquid
layer, it is to be emphasized that both f, and n;
remain to be determined.

The foregoing solution can be employed to
evaluate the energy balance at the interface
(y = 9). Consider an element of interface (length
dx) and let m be the rate at which mass crosses
the interface per unit length. Under steady-state
conditions, the sum of the latent heat liberated
at the interface and the heat conducted to the
interface from the vapor—gas side must equal
the heat conducted away from the interface on
the liquid side; that is

. oT oT
mhfa + k5; = kL (a—y)L (7)

In general, the contribution of the conduction
from the vapor—gas mixture is negligibly small
compared with the contribution of the latent
heat; correspondingly, the second term on the
left-hand side of equation (7) may be omitted.
The condensation rate m is conveniently
expressed in terms of the variables of the analysis
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by starting from the equation of definition
mdx = p;(udé — vdx) (8)

and employing equations (4) and (6), from
which there follows

e o

Then, substituting this into (7) and making use of
the transformed variables, one finds

AT = T,) _ f(n)
hygPr 260(n,)

Furthermore, the right-hand side can be evalu-
ated from the solutions for fand 6, equation (5),

giving

(10)

cp(T; - Tw)
hy, Pr

=ifun. (11)

The left-hand side of this equation represents a
dimensionless group that recurs frequently in
analyses of condensation, the magnitude of
which governs the heat-transfer rate. Equation
(11) will be employed later to eliminate the less
pertinent quantity f...

The velocity problem in the vapor—gas boundary
layer

Strictly speaking, there are four conservation
laws to be fulfilled in the vapor-gas boundary
layer: mass conservation for the mixture, species
conservation for one of the components,
momentum conservation, and energy conserva-
tion. The latter comes into play because, owing
to the presence of the noncondensable, the
temperature field is nonuniform even if the free
stream flow is at the saturation condition.
However, as was already noted, the energy
transferred to the interface due to convection—
conduction in the vapor—gas boundary layer is
very small relative to that liberated as latent
heat. Consequently, no further consideration
need be given to the energy equation.

To proceed, it is especially advantageous to
deal first with the continuity and momentum
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equations, and to momentarily defer treatment
of the diffusion equation. The former are

ou ov ou ou 0%u
+ v

+—=O, ua—x ay=V5;i

= 12
ox dy (12

where constant properties are assumed.* The
foregoing are reduced to similarity form by
writing

e=o-af%) v R
(13)
from which there follows

F"” + $FF" =0 (14)

where, now, the primes represent derivatives
with respect to & It should be pointed out that
the similarity variable is defined so that £ =0
at the interface between the liquid and the vapor—
gas mixture. The velocity components, when
expressed in terms of the new variables, are

u=6_‘l’= UF (15a)
Oy
vy 1 Uev ,
i [\/(T)]“F -h
s _,
+Ug g F' (15h)

in which the last term in equation (15b) stems
from the displaced origin of the similarity
variable ¢£.

Equation (14) is readily recognized as the
classical Blasius equation. However, the cor-
responding boundary conditions are altogether
different from those of the Blasius case. To
obtain the conditions on F, one must employ
the following continuity conditions at the inter-
face and in the free stream.

* The accounting of variable fluid properties would
immediately require that consideration be given to specific
fluids and to specific operating conditions, thereby des-
troying the generality of the present solution method. It is
the intention of the authors to examine the effect of fluid
property variations at a later time.
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(1) The streamwise velocity u is continuous at
the interface. However, owing to the fact that
the interfacial value of u is very much less than
U,, it is permissible to take u = 0 at the inter-
face. In view of equation (15a), this gives

F(0) = 0. (16)

(2) Mass is conserved across the interface.
The mass crossing the interface from the vapor-
gas mixture, taking account of the diffusive as
well as of the convective component, is

mdx = puds — vdx) — (j, + j)dx (17)

in which j, and j, respectively represent the
diffusive fluxes of the vapor and of the gas.
However, (j, + j,) = 0. With this, and with the
use of equations (15a) and (15b), the foregoing

becomes
- 1[ \/(%)] FO).
2 x

Upon equating the r expressions embodied in
equations (9) and (18), there follows

F(0) = Rf(n)

(18)

(19)
where

R = [(pn)/(p)]*. (20)

(3) The shear stress T = p(du/0y) is continuous
at the interface. In terms of the transformed
variables, continuity of shear is expressed as

F"(0) = Rf"(n,). (21

(4) The streamwise velocity u approaches
U, as y approaches infinity. In light of equation
(15a), this condition takes the form

F(c0) = 1. (22)

The four conditions on F, as represented by
equations (16, 19, 21, 22), can be rephrased and
simplified by employing already derived results
for the liquid layer. In particular, the f(5,) and
f"(ns) appearing in equations (19) and (21) can
be eliminated with the aid of (5) and subse-
quently, in its turn, f, is eliminated by employing
equation (11). As a result of these operations.
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the conditions on F can be stated as

F(0) = [R C—"(hT—_—T—‘”)]E F(0) =0,
S

g Pr s
c(T,— T,)] 4
F0)=| R ™|, 23
() [ hfaPr ]g ( a)
F(w) = 0. (23b)

Furthermore, from equations (23a), it is apparent
that

ciT = T,) _ ([FOP |}
R { 2F”(0)} (4a)
_[2FrO)]?
N = [m] - (24b)

Indeed, equations (24a) and (24b) may be re-
garded as alternatives to the first and third
boundary conditions appearing in (23a), and
it is, in fact, especially convenient to do so.

In light of the fact that equation (14) is of third
order, it is sufficient to prescribe three boundary
conditions to specify its solution. Let these be
F(0) = constant = 0, F'(0) = 0, and F'(c0) = 1.

2:0—
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For a given F(0), a numerical solution of equa-
tion (14) can be performed. Such a solution
provides, among other results, the valne of
F’(0). Then, using the prescribed F(0) and the
calculated F”(0), the corresponding values of
R[c,T, — T,)/hs, Pr] and 7, can be evaluated
from equations (24a) and (24b). By assigning a
sequence of values of F(0), the relationship
between the aforementioned parameters can
be mapped out.

As a matter of good fortune, Emmons and
Leigh [10] have already numerically solved
equation (14) for a large number of F(0) values
between 0 and 10. The F(0) and ¢"'(0) are listed in
Table 1 along with the corresponding values of
R[c(T; — T,)/h;, Pr] and n;'. These latter
quantities are also plotted in Fig. 2 (solid line).

There are several observations which are
relevant to Fig. 2 and Table 1. First of all, the
results have a universal character, that is, there
is not a separate dependence of 5, on R and on
c{T; — T,)/h, Pr; rather, only the product of
these parameters appears. This is in contrast to
the case of gravity-flow condensation, where,
even if similar simplifying assumptions are made,

\
L\
\
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N

~—— Numerical solution
~———Integral solution
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FiG. 2. Variation of 1/n, with Re (T, — T,)/h,, Pr.



FORCED CONVECTION CONDENSATION

a comparable universal representation cannot be
achieved. The condensation rate increases with
increasing values of the abscissa of Fig. 2, while
the ordinate represents the inverse of the con-
densate layer thickness 8. Therefore, the thick-
ness of the condensate layer increases with the
condensation rate, but the increase is very
gradual for larger abscissa values; this fact will
be of significance in the numerical evaluations
of the heat-transfer rate that will be made in a
later section. At large values of the abscissa,
1/n, approaches 0-5, while for small values of
the abscissa,

1 [0-332 /R c (T, — T,,)]*
s 4 hfs Pr ‘

Table 1. Results from the velocity and diffusion* solutions

(25)

o @ R ! it
hj‘g Pr ns I/Vl
005 035026 0013358 187150 095073
010 036867 0036827 135770 090510
015 038730 0066008 113620 086273
020 040612 0099244 100760 082332
025 042514 013556 092210 078658
030 044434 017431 086053 075225
035 046371 021501 081391 072013
040 048325 025733 077721 069002
045 050296 030098 074755 066175
050 052282 034575 072306 063517
060 056300 043799 068494 058654
070 060373 053298 065668  0-54321
100 072887 082825 060368 043803
150 094542 13360 056138 0:31857
200 116943 18495 054069  0:24075
300 16323 28759 052157 014927
400 210740 38967 051325 010047
500 258990 49125 050890 007173
600 307708 59244 050638 005322
1000 504852 99518 050242 002161
* For S¢c = 055

If the interface temperature 7, were known,
then Fig. 2 (or Table 1) would contain all the
information needed to calculate the rate of heat
transfer. However, T; is unknown, and a con-
sideration of the diffusion processes in the vapor
gas mixture is necessary for its determination.
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The diffusion problem
Let W denote the local mass fraction of the
noncondensable gas such that

W = p/lp, + p.). (26)

Species conservation for the noncondensable
gas can then be expressed by a diffusion equation
as follows

@7

in which D is the binary diffusion coefficient.
By making use of the similarity transformation,
equations (13) and (15), and introducing a
reduced mass fraction @

W~ W,
== 28
2 W oW, (28)

the diffusion equation can be rephrased as
®" + 3ScFo' = 0. 29)

The quantities W, and W,, are, respectively, the
mass fractions of the noncondensable gas at the
interface and in the free stream. Whereas W,
may be regarded as known, W, is not known a
priori. Sc denotes the Schmidt number of the
mixture. The boundary conditions on @ follow
directly from equation (28), thus

20) =1,  P(o0)= (30)

A formal solution of equations (29) and (30)
can be written in the form

x

{ K
o) =1- JeXp(“ %CJ.Fdﬁ)

¢}

&
x dé/jexp(— —JFdé)dé. (31)
[¢]

Of particular relevance for the present analysis
is the derivative d®/d¢ at & = 0, which follows
from equation (31) as

© ¢
P0) = — l/fexp <—%€deﬁ)dé. (32)
o i
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It remains to extract the value of the inter-
facial mass fraction W, which, in turn, leads to
the interface temperature T;. Owing to the fact
that the interface is impermeable to the non-
condensable gas, it follows that the interfacial
mass flux of the noncondensable is zero. Taking
cognizance of both convective and diffusive
transport, the impermeability condition
becomes

$_Nej= - ¥
Py “dx V)=jg=—p oy

If equation (33) is recast into the variables of
the analysis, one arrives at

(33)
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Sc, F(0), and @'(0) thus available, equation (34)
yields W, /W, By suyccessively prescribing F(0),
a corresponding set of values for W, /W, can be
generated. However, since there is a unique re-
lationship between F(0)and R[c(T;— T,))/h,Pr],
it follows that W_ /W, is also uniquely related
to the latter parameter, for a given Schmidt
number.

In anticipation of the forthcoming heat-
transfer calculations, W, /W, has been evaluated
for Sc = 0-55 (mixture of air and steam). The
results are listed in the last column of Table 1
and are also plotted in Fig. 3. It is evident that
for all cases, W, = W, ; in other words, there is
a buildup of noncondensable gas at the inter-

{ Wo _ _ FO)Sc (34) face. Moreover, if it is recognized that the
W, 29'(0)° abscissa is a measure of the condensation rate,
[ |
1-0
= —
~~~~~~
o8 \\
0-6
L \\~ Sc=* 0-55
04 K
— Numerical solution \\
————Integrai solution N
02 N
~N
L ‘\\N
o 1 141t dadal 1 mmenenInnnn i t g
-0l 002 0-04 008 0-080-| 02 04 06 08 |-0 20 40
Clf -1
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FIG 3. Variation of W,/W; with Rc(T; — T,)/h,, Pr for Sc = 0-55.

It is interesting to observe that W,, and W,appear
only as the quotient W_ /W,

Now, attention may be turned to the deter-
mination of W, First, the Schmidt number is
specified for the vapor—gas mixture under
consideration. Then, if F(0) is also specified, the
function F(£) is known and the quadrature
represented by equation (32) yields #'(0). With

then it is evident from Fig. 3 that the buildup is
accentuated at high rates of condensation.
Indeed, the interfacial mass fraction of the
noncondensable may exceed the free stream
value by a factor of 10 or 20.

The aforementioned trend is reasonable on
physical grounds. A higher condensation rate
is associated with a larger convective flow
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toward the interface. The convective flow carries
noncondensable gas as well as vapor. To balance

the larger convective inflow of the noncondens-
able, there must be a correspondingly augmented

diffusive outflow. The magnitude of the diffusive
flow depends on the magnitude of the concen-
tration gradient, whence the increase of the
interfacial mass fraction.

Aside from the separate dependence on the
Schmidt number, the results appearing in Fig. 3
have a remarkably universal character. In
particular, the single W_/W, curve is universal
for all W,. Furthermore, as was already dis-
cussed in connection with Fig. 2, the dependence
on R and c(T; — T,)/h;, Pr appears only as a
product of these parameters. In contrast, it is
interesting to observe that for gravity-flow
condensation, W_ /W, depends separately on
S¢,W, R, and c(T; — T,)/h,, Pr.

The procedure by which the W, results are
employed in determining the interface tempera-
ture T; will now be outlined.

Interface temperature; heat transfer

Consider the condensation problem involving
a specific vapor and noncondensable gas where-
in the following quantities are specified: T,
W,, T, This information, coupled with the
results presented in the prior section, is sufficient
for the determination of the interface tempera-
ture T..

The first step is to evaluate the total pressure
p of the system. For this purpose, it is convenient
to assume that the mixture and its components
behave like perfect gases such that

Py 1-w
p 1-W1-M/M,)

(35)

where p, represents the vapor pressure. If T, is
specified and the free stream is assumed to be
at saturation, then p, is available from the
tabulated properties of the vapor. With this and
with the known value of W,, the total pressure
p follows from equation (35).

Next, a trial value of T is assumed. Owing to

6A
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the fact that the interface is a saturation state
for the vapor, the choice of T; also fixes p,;. With
these, W, is found from the relation

1 — (p,/p)

which is simply a rephrasing of equation (35).

Attention may now be turned to evaluating
the abscissa variable of Fig. 3. For this purpose,
the thermodynamic and transport properties
(R,c,, hs,, Pr) appearing therein are calculated
at interface conditions. With these and with
(T; — T,), the value of the abscissa is determined
and W_/W, is read from the curve. The resulting
W, is converted to p,; by applying equation (35)
and, in turn, 7; follows from the tabulated
saturation data for the vapor. If the T; thus
obtained differs from that originally assumed,
a readjustment is made and the process is
repeated until convergence is achieved.

The procedure outlined above can be modified
to shorten the computations. For instance, for a
given W, the W_/W, curve of Fig. 3 can be
converted to a p,,/p curve, thereby eliminating
further consideration of W. However, more
significantly, the entire procedure can be carried
out on an electronic computer. Indeed, the
forthcoming numerical results of this investiga-
tion were generated in this manner.

Once T, has been found, then the heat-
transfer rate follows directly. Let q denote the
local heat transferred to the surface per unit
time and unit area, so that

aT\ kL(T; - Tw) Uoo
=k, — = W —_®
R I e G

where equations (3) and (5) have also been used.
The quantity 1/q; is a unique function of
R[c,(T, — T,)/h;, Pr], and T, is calculated as
described in the foregoing paragraphs.

It is particularly interesting to compare the
heat-transfer rate in the presence of non-
condensables with that for the case of a pure
vapor. The comparison is made under the condi-
tion that T,, T,, and U_ are the same in the

W =

(36)
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two cases. For the pure vapor (subscript 0), one

has
kL O(Too — Tw)\/( Uco )
= 38)
1o fs,0 Vi, 0X (

where 17; , is found from Fig. 2 by replacing
(T, — T,) in the abscissa with (T, — T,) and
evaluating the fluid properties at T,. Then,
upon ratioing equations (37) and (38), there
follows

R M) -
qo tn5,0/\ T — T, ]\ k.0 v )

The ratios of the condensate layer thicknesses
and the temperature differences that constitute
the first two terms of equation (39) are evaluated
in accordance with the foregoing development.
It only remains to discuss the computation of
the property ratios. When a constant-property
analysis is applied to a real fluid, it is common to
take account of the temperature-dependence of
the properties by employing a reference tempera-
ture. For the two cases under consideration
here, the corresponding reference temperatures
may be represented as

T*=T, + C(T, - T,)
T* =T, + (T, — T,).

(40a)
(40b)

The constant C has not been determined
specifically for the problem of forced convection
condensation. However, owing to the fact that
the temperature differences are not large and
that only property ratios are involved, there is
no need to know C to a high degree of precision.
For the case of gravity-flow condensation, the
value of C was found to be 0:31. For present
purposes, it was deemed sufficient to use C = §.

Summing up, it is seen that for prescribed
values of T, T,, and W, the heat-transfer ratio
g/q, can be calculated for a given free stream
flow of vapor and noncondensable gas. The
departure of g/q, from unity is direct measure
of the effect of the noncondensable gas.
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The just-concluded general development will
now be applied to the case of steam with air as
the noncondensabile.

CONDENSATION OF STEAM WITH
AIR AS NONCONDENSABLE

The steam-—air system, besides being of engi-
neering interest, offers the possibility of direct
comparison between forced convection bound-
ary-layer flow (present investigation) and gravity
flow [7] The specialization of the solution
method described in the preceding sections to a
given vapor-gas system can be made as soon as
the appropriate fluid properties are assembled.
These include properties of the pure vapor
(including the vapor pressure—temperature re-
lation), of the condensed liquid, and of the gas.
In addition, expressions for computation of the
mixture density and viscosity are needed, as is
the mixture Schmidt number. The fluid proper-
ties for the steam—air system that were used in
this investigation are the same as those pre-
viously employed in [7]. Inasmuch as the
sources of the property data and the computa-
tion methods pertaining thereto are adequately
discussed in the reference, there is no need for
repetition here.

Computations of q/q, were performed for
five values of the free stream temperature T,
ranging from 212 to 80°F, which correspond
approximately to a range in the system pressure
p from 1 atmosphere to 0-5 psi. At each T, the
mass fraction W, of the air in the free stream
was assigned values of 0-005, 0-02, 0-05 and 0-10.
In addition, at each fixed W,, the temperature
difference (T,, — T,) was varied between 2 degF
and 40 degF.

The heat-transfer results are presented in
Figs. 4-8, which correspond respectively to T,
values of 212, 180, 150, 115 and 80°F. In each
figure, g/q, is plotted as a function of the
temperature difference (T,, — T,,) for parametric
values of W,. The solid lines represent the
results for forced convection condensation. The
departure of the curves from unity is a direct
measure of the effect of the noncondensable gas.
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F1G. 8. Condensation heat transfer for steam-air system, T,, = 80°F.

Inspection of the figures reveals several
general trends. At any fixed temperature differ-
ence and fixed free stream temperature level, the
heat transfer decreases monotonically as the
mass fraction of the noncondensable increases.
The decrease in heat transfer is perceptibly
accentuated as the free stream temperature
decreases (for instance, compare Figs. 4 and 8).
Thus, the presence of the noncondensable is
more strongly manifested when the condensa-
tion takes place at sub-atmospheric pressures.
At the higher free stream temperature levels and
at the lower mass fractions, q/q, is rather in-
sensitive to the temperature difference (T, —
T,). When T, decreases and W, increases, the
heat-transfer ratio becomes more sensitive to
the temperature difference, decreasing as (T,, —
T,,) increases.

Perhaps as interesting as the aforementioned
trends are the actual magnitudes of the re-
ductions in heat transfer. For a trace amount of
noncondensable gas, say W,, = 0-005, the heat
transfer is only slightly decreased. Indeed, even
for W, =002, appreciable effects are en-
countered only at the lower temperature levels
and larger temperature differences. With larger
values of W_, such as 0-10, q/q, is much less than
unity, especially at low temperature levels.

The just-described decreases in the heat-
transfer rate can be attributed to the buildup of
the noncondensable gas at the interface, as was
already discussed in connection with Fig. 3. The
effect of such a buildup is to lower the corres-
ponding partial pressure of the vapor, which, in
turn, lowers the interface temperature T; at
which the condensation occurs (the interface is
a saturation state). In this way, the thermal
driving force (T, — T,) is lowered, thereby
decreasing the heat-transfer rate.

It is especially interesting to compare the
effect of the noncondensable gas in forced con-
vection condensation with that for gravity-flow
condensation. Results for the latter situation,
available from [7], are plotted in Figs. 4 and 8
as dashed lines.* Inspection of the gravity-flow
results indicates general trends that are essenti-
ally the same as those already enumerated for
the forced-convection case. However, there is a
dramatic difference in the extent of the heat-
transfer reductions brought about by the pres-
ence of the noncondensable gas. It is clear that
gravity-flow condensation is very much more

* Although available, gravity-flow results are not in-
cluded in Figs. 5-7 because such further comparisons yield
conclusions identical to those which follow from Figs. 4
and 8.
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sensitive to a noncondensable gas than is forced
convection condensation, a finding that is
intuitively reasonable. Indeed, in the former
case, the presence of trace amounts (W, = 0-005)
-can lead to g/q, values on the order of 0402,
while larger concentrations such as W, = 0-10
can reduce q/q, to 0-1. These values of g/q, are
significantly lower than those for the forced
convection case.

It is also appropriate to discuss the work of
Koh [12]. This publication describes a method
for calculating the effect of noncondensables on
forced convection film condensation ; but, aside
from a single isolated case, no heat-transfer
results are given. Owing to the fact that Koh
elected to treat the problem without making
use of the judicious simplifications employed
here, his approach requires the pre-tabulation
of information which depends on four inde-
pendent parameters (rather than the present
two). In light of such an extensive parametric
dependence, it is not surprising that a pre-
tabulation would fail to cover a significant
number of interesting cases. For instance, none
of the results appearing in Figs. 4-8 of the
present paper is calculable from the information
provided by Koh. In addition, no suggestion
appears in Koh’s work as to how to select the
parameters Pr and R, the choice apparently
being somewhat arbitrary. Thus, in the one case
worked out by Koh, Pr and R were taken as
1 and 100, about half of the appropriate values.

The single case considered by Koh for
condensation involving a steam-air mixture is
for W, =002 and T, = 212°F (saturation
temperature of free stream flow), along with Pr
and R values as noted above. Unfortunately,
no information is given about T, and this
precludes the possibility of direct comparison
with the present results. However, there is every
indication that the T, — T, corresponding to
Koh’s computation was very much larger than
any investigated here. This is inferred from the
fact that Koh gives a value for T; of 190°F while
the T; corresponding to the rightmost point on
the W, = 0-02 curve of Fig. 4 is approximately
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207°F. For his assigned conditions, Koh finds
q/qo = 0795, which is substantially below any
of the values appearing in Fig. 4 for W = 0-02.
On the basis of his single result, Koh inferred
that the effects of noncondensables in forced
convection and gravity flows were of comparable
magnitude. This inference is not borne out by
the extensive comparisons of Figs. 4 and 8.

THE EFFECT OF AN INTERFACIAL
RESISTANCE

As explained in the Introduction, kinetic
theory indicates that the temperature of a
condensing vapor differs from the temperature
of the adjacent condensed phase. The effect of
such a jump phenomenon is to lower the
interface temperature, thereby reducing the
thermal driving force. The magnitude of the
temperature jump varies directly with the rate
of condensation; consequently, the interfacial
resistance is most strongly manifested in the
case of a pure vapor, as was verified by heat-
transfer calculations for gravity-flow condensa-
tion [7]. In view of this, the forthcoming dis-
cussion will be concerned only with a pure vapor.

A widely accepted representation for the
temperature jump, specialized to the case of a
pure, saturated vapor (for instance, [9]), is

m=XT, —T)

2-(r52 ) B
2—6¢/\nR3) T~
In the foregoing, o is the condensation co-
efficient characterizing the fraction of the vapor
molecules striking the liquid surface which
actually condense. R is the gas constant of the
vapor.
The numerical values of ¢ are different for
different fluids. Indeed, even for a given fluid,

the values of ¢ reported by various investi-
gators show considerable variation. For water,

(41)

where

(41a)
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which has been subject to rather intensive
investigation, ¢ values ranging from 004 to 1
have been reported. The most recent measure-
ments, performed with great care, indicate that
o is at least 0-35 and is probably unity. The
various literature sources wherein this infor-
mation is contained are cited in [ 7] and will not
be repeated here.

The mass flux passing from the vapor into the
interface is also expressed by equation (18).
Upon equating the i expressions from equations
(41) and (18), there follows, after rearrangement

T, — T, pU F(0)

E [29(1; - T»/x/(ufx)]'

(42)

Equation (42) provides a means for computing
the change in the thermal driving force owing to
the effect of the interfacial resistance. Once the
foregoing ratio of temperature differences is
known, the reduction in heat transfer can be
evaluated by applying equation (39), where now
the unsubscripted and subscripted quantities
respectively denote the cases with and without
interfacial resistance.

It is evident from equation (42) that the values
of Uy, x, T, (I; — T,) and o, as well as the
fluid itself, must be specified before the compu-
tations can be performed. Values of 20 ft/s and
0-25 ft appear to be reasonable choices for U
and x. Then, for T, = 212°F and (T, — T,,) =
40 degF, gq/q, was found to be 09997, 09985
and 0985, respectively for ¢ = 1, 0-35 and 0-04.
These results are essentially unchanged when
the computations were repeated using (T; — T,,)
= 5 degF. Next, the heat transfer was computed
for a temperature level T,, = 80°F, resulting in
q/q, = 0997, 0:987 and 0-873 for ¢ = 10, 0-35
and 0-04. These values are very little different if
(T, — T,) = 40 degF or 5 degF.

Only if the ¢ value were 0-04 would the inter-
facial resistance lead to a non-negligible re-
duction in heat transfer and then only at the
relatively low temperature level T, = 80°F. In
light of recent evidence suggesting that ¢ = |
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for steam, it may be concluded that the inter-
facial resistance has a negligible effect on forced
convection condensation for this fluid. This is
in accordance with the findings of [7] for the
case of gravity-flow condensation.
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APPENDIX

Integral Solution for Condensation
in the Presence of a Noncondensable

An alternate, but approximate, solution for
forced convection condensation in the presence
of a noncondensable gas can be carried out
using the momentum and diffusion integrals
[11]. By making liberal reference to the formu-
lation reported in the main body of the paper,
the description of the integral solution can be
kept brief.

The analysis of the liquid layer remains the
same as before. To solve the velocity problem
in the vapor—gas layer, equation (14) is replaced
by its integral form

2F"(0) = FO)[1 — F(0)] + 1 Fde - | (Fyde
(1]
(43)

wherein

(44)

t-a- (32)

and y = 4 represents the edge of the velocity
boundary layer in the vapor—gas mixture. For
the velocity profile, one may use

-
F&O=2{=)-1=).
© (g 5

The foregoing satisfies the conditions that F'(0)
=0, F'({,) = 1, F'(¢,) = 0. Moreover, by sub-

jecting equation (45) to the third of conditions
(23a), one finds

— 3 CP('I; - Tw)
‘s ;1,,/2[R hyqPr
thereby establishing a relation between ¢, and
Ns

(453)

(46)

Then, upon substituting the profile (45) into
the integrated momentum equation (43), carry-
ing out the integrations, and making use of (46)
and (23), there follows

n G — TV
o i 30[R—————hnpr ] . @
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In effect, equation (47) takes the place of
equation (24a) and the first two columns of
Table 1.

Numerical results obtained by solving equa-
tion (47) are listed in Table Al and are also
plotted in Fig. 2 (dashed line). Inspection of the
figure shows that good agreement exists between
the approximate and the exact solutions.

Table Al. Results from the integral solution

R Cp('I: - Tw) 1 éA Woo
hyy Pr Ns S W
0-0103 2:092 0-795 09606
0-0210 1-658 0-793 09371
00334 1-429 0-790 09149
0-0510 1-250 0-786 0-8880
0-105 1-000 0-777 0-8230
0-169 0-870 0-766 07627
0-228 0-300 0756 07156
0352 0714 0-737 0-6344
0-466 0-667 0724 0-5729
0-624 0625 0-707 0-5021
0-852 0-588 0-685 04198
1-221 0-556 0-657 03212
1-521 0-541 0639 02627
2:304 0-521 0-606 01636
3-460 0510 0-581 0-0912

Next, attention is directed to the diffusion
equation (29), whose integral form may be
written as

20(0) = — Sc[F(O) +f ¢F’d£] 48)
]

&= - 6)\/(%)

and y = d is the thickness of the diffusion layer.
A mass fraction profile satisfying the conditions

B0) =1, HE) =0, () =0is

1o E) (LY
a6 =1 2(!:.,)+(é.,)'

Also, by making use of the impermeability
condition (34) and the first of equations (23a),

where

(49)

(50)



1844

one finds

|44 T, - T,
¢a= 2%(1 - 7;) / Sc [R —————C”(h'f B W)].
1)

The integration appearing in equation (48)
may now be performed. In this connection, it is
essential to note that for the Schmidt number of
interest here (0-55), &; > £,. Upon taking cogniz-
ance of this fact and carrying out the indicated
operations, there results

W, 1 AWTATRYAY
wmmsa - () () o) ]
(52)

For a given Schmidt number, the determina-
tion of W, /W, is carried out on a trial and error
basis for a selected value of R[c(T; — T,)/h,,
Pr]. Corresponding to the latter, equations (47)
and (46) respectively give 7, and &,. Then, upon
assuming a trial value of W_/W, &, is calculated
from (51). With the known values of £, and &,
a new W, /W, is obtained from equation (52). If
the output and input values of W, /W, are not
the same, another guess is made and equations
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(51) and (52) are re-evaluated. This procedure is
repeated until convergence is achieved.

The results of the aforementioned calculation
procedure are listed in Table A1, and the W, /W,
are also plotted in Fig. 3 (dashed line). In general,
the agreement between the two curves shown in
the figure is satisfactory, with the greatest
deviations occuring at the larger values of the
abscissa.

The results from the integral solution were
employed as a basis for computing g/q, curves
corresponding to the conditions of Figs. 4 and 8.
The general agreement of these results with
those shown in the aforementioned figures is
entirely satisfactory, but there are some small
differences in detail. These differences pre-
sumably stem, at least partially, from the
deviations between the W, /W, curves shown in
Fig. 3. However, part of the difference may well
be due to the fact that the fluid properties used
in computing the g/q, results from the integral
solution were somewhat different {rom those
used in evaluating the exact solution. In view of
the uncertainty introduced by the use of
different fluid properties, the g/q, results from
the integral solution have not been included in
Figs. 4 and 8.

Résumé—L ’effet d’un gaz non condensable sur la condensation avec convection forcée dans une couche
limite laminaire est examiné théoriquement. L’analyse est d’abord conduite en général pour n’importe
quel écoulement arbitraire d’une vapeur et d’un gaz non condensable, et certains résultats généraux sont
obtenus. On trouve numériquement et par une méthode intégrale des solutions des équations différentielles
de similitude. La formulation générale est appliquée au systéme vapeur d’eau-air et ’on compare les
transports de chaleur avec et sans le gaz non condensable dans une large gamme de conditions d’essai.
Les réductions de transport de chaleur dues au gaz non condensable sont accentuées lorsque la pression
¢st faible. En général, la condensation avec convection forcée est beaucoup moins sensible que dans le cas
d’un écoulement dii A la pesanteur. L'effet d'une résistance in erfaciale (c’est-a-dire un saut de température
a Uinterface liquide-vapeur) est également examiné. Les résultats due calcul montre que 'effet sur le
transport de chaleur es négligeable.

Zusammenfassung—Der Einfluss eines nichtkondensierbaren Gases aul Kondensationsvorginge in
laminarer Grenzschicht bei Zwangskonvektion wird analytisch untersucht. Die Analyse wird erst in
allgemeiner Form durchgefiihrt fiir beliebige Stromung eines Ddmpfes und eines nichtkondensierbaren
Gases; dafiir wurden bestimmte universelle Ergebnisse erhalten. Losungen der Differentialgleichungen
wurden sowohl numerisch als auch nach einer Integralmethode gefunden. Die allgemeine Formulierung
wird angewendet auf das Dampf-Luft-System. Der Wiarmeiibergang ohne und mit nichtkondensierbarem
Anteil wird in einem grossen Anwendungsbereich verglichen. Die Abnahme des Warmeiibergangs infolge
eines nichtkondensierbaren Anteils zeigt sich besonders bei kleinen Arbeitsdriicken. Im allgemeinen ist die
Kondensation bei Zwangskonvektion weit weniger empfindlich als bei natiirlicher Konvektion. Der
Einfluss eines Grenzflichenwiderstandes (d.h. ein Temperatursprung an der Flissigkeits- und Dampf-
grenze) wird ebenfalls untersucht. Die errechneten Ergebnisse zeigen einen vernachlissigbaren Einfluss auf
den Wirmeiibergang.
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Anporanua—AHaINTUYECKE HCCTENOBAHO BIMAHME HEKOHAEHCHPYIOWErocA rasa Ha KOH-
FieHCANNI0 TIPM BHHYMJEHHON KOHBEKIMH B JaMHHAPHOM morpaHu4yHoM ciaoe. IIpoBogmaca
obwMit aHAJH3 [IJIA MPOM3BOJIBHOTO NMOTOKA, COCTOALIEr0 M3 NMapa M HeKOHJEHCHPYIOIerocs
rasa, 1 MoJy4YeHH HeKOTOpHe obmue peayabraT. Jupdepennunanntsle ypaBHeHUA nogobud
pelleHH YMCIEeHHO, a TAKIKE ¢ NOMOLIbI0 MHTErpatbHOro Meroaa. O6masa ¢opmyaHpoBKa
NMPMMEHACTCA AJIA CUCTEMbl MAP-BO3AYX ; MPOLECCH Tenaoo0MeHa NPH HAIMYHK M OTCYTCTBHH
HEKOHJEHCHPYIOIIEroCAd BeilieCTBA CPABHHUBAIOTCHA MEKAY COOOM A INMPOKOrO AMANa30HA
pabouux ycaosuit. IloguepxuBaercd, 4To NMpH HUSKUX pPAOOYMX JABIAEHMAX NPHCYTCTBUE
HEKOHJIeHCUDYIOIEroCsA rasa CHUMaeT HHTEeHCHBHOCTD Temiloo0mena. B obuieM, KonaeHcanua
IpH BHIHYMICHHON KOHBEKIMH FOpasfo MeHee UyBCTBUTENbHA, UeM KOHHEHCALMA B IDaBU-
TaUMoOHHOM HoTOKe. MccenopaHo Takike BIMAHNE CONPOTHBIEHUA HA MOBEPXHOCTH pPasfeia
(To ecTb, TeMIlepaTypHHI CKAuYOK HA NOBEPXHOCTH Pasfesa KUIKOCTb-NAp). Buuucienune
Pe3yabTATH MOKA3KBAIOT HE3HAYNTEIbHOE BIMAHNUE CONPOTHBIEHUA HA TEILIOOOMEH .
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